Title Unidirectional Surface Plasmon-polariton Excitation by a Compact Slot Partially Filled with Dielectric Unidirectional Surface Plasmon-polariton Excitation by a Compact Slot Partially Filled with Dielectric References and Links
نویسندگان
چکیده
We propose a new scheme on unidirectional surface plasmonpolariton (SPP) excitation with the following advantages: ultracompact size, working at arbitrary incidence angle and over a wide spectrum. The proposed structure utilizes a partially filled metallic slot with dielectric to realize unidirectional SPP excitation via direct field manipulation. We theoretically and numerically show that unidirectional SPP excitation with a ratio of 93% can be achieved by a structure with a 50 nm slot. The proposed structure keeps its functional capability over incident angles from −80° to 80°, and has a broadband working spectrum of more than 70 nm. © 2013 Optical Society of America OCIS codes: (240.0240) Optics at surfaces; (240.6680) Surface plasmons. References and links 1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824– 830 (2003). 2. S. A. Maier, Plasmonics: Fundamentals and applications (Springer, 2007), Chap. 2. 3. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). 4. C. Yan, D. H. Zhang, and D. Li, “Wedge-shaped metal-dielectric composite metamaterials for light control,” Metamaterials (Amst.) 4(4), 170–174 (2010). 5. B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett. 91(8), 081111 (2007). 6. J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat Commun 2, 525 (2011). 7. C. Yan, D. H. Zhang, Y. Zhang, D. Li, and M. A. Fiddy, “Metal-dielectric composites for beam splitting and farfield deep sub-wavelength resolution for visible wavelengths,” Opt. Express 18(14), 14794–14801 (2010). 8. B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94(1), 011114 (2009). 9. Y. Wang, L. Wang, J. Liu, X. Zhai, L. Wang, D. Xiang, Q. Wan, and B. Meng, “Plasmonic surface-wave bidirectional splitter in different angles of incident light,” Opt. Commun. 283(9), 1777–1779 (2010). 10. J. Chen, Z. Li, S. Yue, and Q. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett. 97(4), 041113 (2010). 11. N. Bonod, E. Popov, L. Li, and B. Chernov, “Unidirectional excitation of surface plasmons by slanted gratings,” Opt. Express 15(18), 11427–11432 (2007). 12. A. Roszkiewicz and W. Nasalski, “Unidirectional SPP excitation at asymmetrical two-layered metal gratings,” J. Phys. B 43(18), 185401 (2010). 13. A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11(10), 4207–4212 (2011). 14. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007). 15. T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008). #180265 $15.00 USD Received 21 Nov 2012; revised 15 Feb 2013; accepted 17 Feb 2013; published 4 Mar 2013 (C) 2013 OSA 11 March 2013 / Vol. 21, No. 5 / OPTICS EXPRESS 5949 16. Y. Wang, L. Wang, J. Liu, X. Zhai, L. Wang, D. Xiang, Q. Wan, and B. Meng, “Plasmonic surface-wave bidirectional splitter in different angles of incident light,” Opt. Commun. 283(9), 1777–1779 (2010). 17. L. Wang, T. Li, L. Li, W. Xia, X. G. Xu, and S. N. Zhu, “Electrically generated unidirectional surface plasmon source,” Opt. Express 20(8), 8710–8717 (2012). 18. A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11(10), 4207–4212 (2011). 19. M. He, J. Liu, K. Wang, X. Wang, and Z. Gong, “Efficient directional excitation of surface plasmon polaritons by partial dielectric filling slit structure,” Opt. Commun. 285(21-22), 4588–4592 (2012). 20. S. B. Raghunathan, C. H. Gan, T. van Dijk, B. Ea Kim, H. F. Schouten, W. Ubachs, P. Lalanne, and T. D. Visser, “Plasmon switching: Observation of dynamic surface plasmon steering by selective mode excitation in a sub-wavelength slit,” Opt. Express 20(14), 15326–15335 (2012). 21. X. Li, Q. Tan, B. Bai, and G. Jin, “Tunable directional beaming assisted by asymmetrical SPP excitation in a subwavelength metallic double slit,” Chin. Opt. Lett. 10(5), 052401–052403 (2012). 22. J. Chen, Z. Li, S. Yue, and Q. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett. 97(4), 041113 (2010). 23. W. L. David and W. R. Hunter, “Silver (Ag),” and “Chromium (Cr),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985). 24. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt. 21(6), 1069–1072 (1982). 25. R. A. Chipman, “Optical and physical properties of materials,” in Handbook of Optics, M. Bass, ed. (McGrawHill, New York, 1995). 26. J. R. Devore, “Refractive indices of rutile and sphalerite,” J. Opt. Soc. Am. 41(6), 416–419 (1951). 27. S. Astilean, Ph. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4-6), 265–273 (2000). 28. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005). 29. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). 30. M. W. Maqsood, R. Mehfuz, and K. J. Chau, “High-throughput diffraction-assisted surface-plasmon-polariton coupling by a super-wavelength slit,” Opt. Express 18(21), 21669–21677 (2010). 31. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010). 32. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004). 33. K. Y. Kim, Plasmonics Principles and Applications (InTech Rjieka Croatia 2012), Chap. 6.
منابع مشابه
Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating
A nondiffracting metallic lamellar grating formed from three equally spaced grooves per repeat period, with one being slightly shallower than the other two is examined at microwave frequencies. When filled with a slightly lossy dielectric, this structure supports a remarkably nondispersive surface plasmon polariton mode, which exhibits strong selective absorption of incident power. Measured ref...
متن کاملDevelopment of A Compact and Low Profile Cavity Backed Slot Antenna Using Microstrip Gap Waveguide Technology
Proof of concept of a cavity backed slot antenna based on inverted microstrip gap waveguide (IMGW) technology is presented. Since the antenna is operating based on the first resonating mode of the cavity, it is more compact compared to the ordinary cavity backed slot antennas in which the second cavity mode is used for radiation. Furthermore, the proposed antenna element introduces lower lo...
متن کاملExcitation of a surface plasmon with an elastomeric grating
We report on a new method to excite surface plasmon polaritons on a thin metal slab surface using an elastomeric grating which is fabricated by replica molding technique. The grating is placed on the metal surface which creates a periodic perturbation on the surface matching the momentum of the incident light to that of the surface plasmon. The conformal contact between the metal surface and th...
متن کاملPlasmon mode transformation in modulated-index metal-dielectric slot waveguides.
The concept of adiabatic mode transformation between silicon waveguide and surface plasmon-polariton modes in subwavelength metal-dielectric slots is investigated. The mode transformer consists of a modulated-index slot region, which is bound by two metal slabs. Using the design scheme, we will show that the optical dispersion of a modulated-index metal slot waveguide can be engineered well abo...
متن کاملEfficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths
The excitation of surface plasmon-polariton SPP waveguide modes in subwavelength dielectric ridges deposited on a thin gold film has been characterized and optimized at telecommunication wavelengths. The experimental data on the electromagnetic mode structure obtained using scanning near-field optical microscopy have been directly compared to full vectorial three-dimensional finite element meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017